Wastewater Treatment for Mega-Cities in the Developing World

> Frédéric Chagnon Donald R.F. Harleman

ADB - September 20, 2005

Outline

Public Health in Developing Countries Staged Wastewater Treatment Chemically Enhanced Primary Treatment

Sanitation in Developing Countries

- 3 billion without appropriate sanitation
- 2 billion more urban dwellers in next 20 years
- 95% sewage untreated before discharge

Sanitation Related Public Health

- Diseases
 - Water is Transmission Pathway:
- Women & children most affected
 - 1.5 million children die each year from diarrhoeal disease
- Large improvements conferred by appropriate water and sanitation
- Environmental quality benefits from sanitation

Urban Areas & Slums

Massachusetts Institute of Technology

Sanitation & Development

- Costs of poor sanitation
 - Human morbidity (lost productivity; healthcare services)
 - Environmental degradation (loss of ecosystem services)
 - Foregone revenues
- Appropriate infrastructure alleviates poverty
 - Stimulates economic growth
 - Narrows socio-economic gap
 - Increases productivity
 - Improves health
- Women & children stand to gain most
 - Children more vulnerable to disease
 - Women have more contact with water/wastewater

Outline

Public Health in Developing Countries Staged Wastewater Treatment Chemically Enhanced Primary Treatment

Constraints

- Objectives are to improve public health and environmental quality
- Strict environmental regulations
- Limited budgets, high costs
- Limited capacity/willingness to pay on consumer behalf
- Resulting "partial treatment" financially wasteful, no public health benefit, little environmental improvements

Constraints

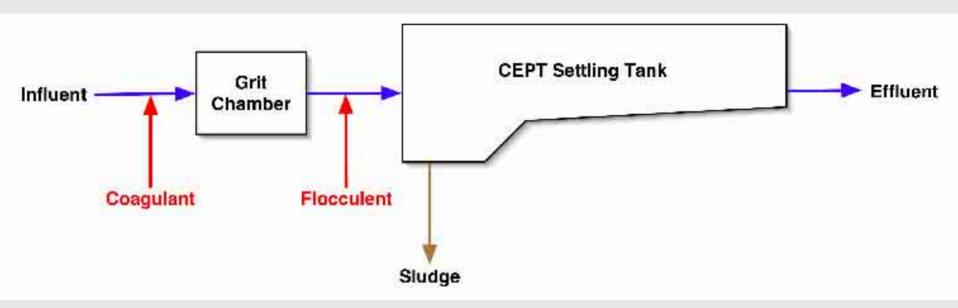
- Limited cost recovery possibility
 - User charges incentive to serve users
 - User charges incentive to limit waste
 - But possible limited ability or willingness to pay (initially)
- Limited operating capacity
 - No previous experience with wastewater treatment
 - Simple treatment = learn basics and build-up capacity
- ⇒ Start with affordable tariffs (that fully recover O&M) and simple technology (for which capacity to operate easy & quick to build)

Non-Phased Development

- Initial wastewater treatment to high environmental standard
- Cost recovery through user charges difficult (no capacity/willingness to pay)
- Limited technical capacity for operations
- Only part of a city's wastewater can be collected and treated
- Wastewater treatment plants and infrastructure may not be operated properly
 - Not able to pay for O&M
 - Not technically able to properly operate

Phased Development

- Prioritization of problems to be tackled
- Comprehensive design of sanitation infrastructure and treatment
 - Meets environmental standards
 - Designed for future growth
- Staged implementation
 - Start with full wastewater collection and simple affordable treatment, build-up gradually
 - First priority is to treat 100% of wastewater to level where disinfection effective to mitigate public health problems
 - Subsequent implementation of planned/designed secondary treatment to comply with environmental regulations



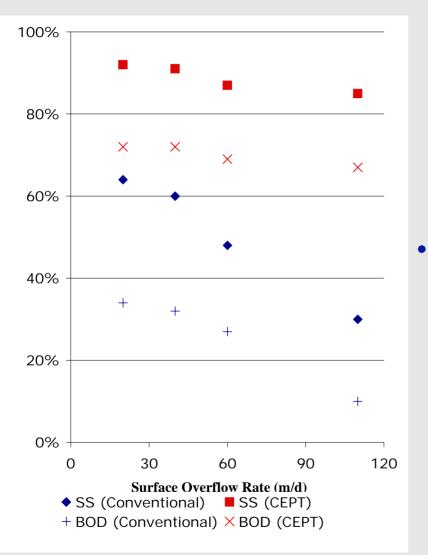
Outline

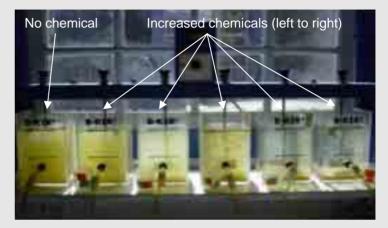
Public Health in Developing Countries Staged Wastewater Treatment Chemically Enhanced Primary Treatment

CEPT

- Chemicals added to clump smaller particles together into larger particles
- Larger particles settle faster
- Enhanced version of conventional primary treatment
- Can be followed by secondary treatment and/or outfall

Primary Efficiency

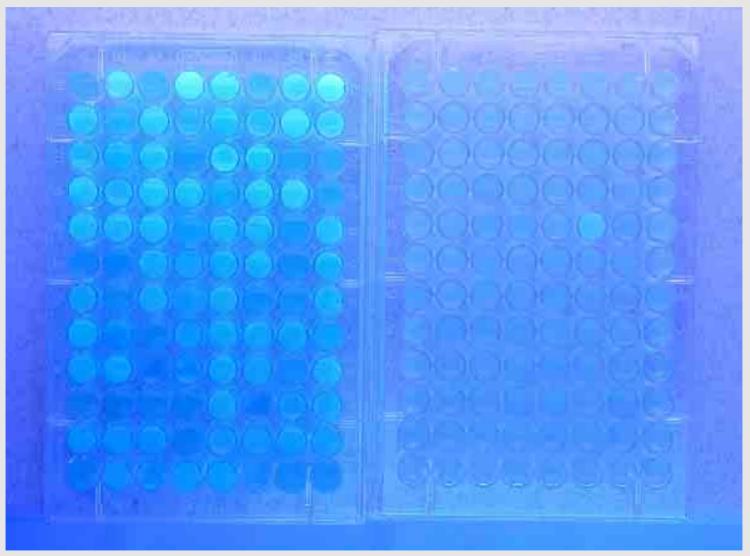

Conventional Primary Treatment


Overflow Rate	% Removal				
(m/d)	BOD	SS	Phosphorus	Pathogens	
30–50	25–40	40–70	5–10	50–60	
Chemically Enhanced Primary Treatment					
Overflow Rate	% Removal				
(m/d)	BOD	SS	Phosphorus	Pathogen	
60–120	40–70	60–90	70–90	80–90	

Simple technologies Low energy and operator skill requirements

Primary Treatment

- CEPT vs. Conventional Primary
 - Higher BOD & SS removal
 - Operates at higher overflow rate
 - Smaller area requirement
 - Lower Capital Cost
 - Greater resilience to flow variation
 - Reduced size of subsequent secondary treatment
 - Effluent can be disinfected
 - Larger amount of sludge produced
 - Higher O&M (chemicals)


Bench-Scale CEPT

Massachusetts Institute of Technology

Disinfection of CEPT Effluent

Massachusetts Institute of Technology

Cost Comparison

	Capital Costs (US\$M/m ³ .s ⁻¹)	O&M Costs (US\$M/m ³ .s ⁻¹ /yr)
PT without Disinfection	1.5	0.2
CEPT + Disinfection	1.3	0.5
PT + AS + Disinfection	5.0	1.0

Construction costs based on plant capacity;

O&M costs based on average daily flow (1/2 plant capacity).

Advantages of CEPT as 1st Stage

Effluent can be disinfected

2x-3x conventional primary surface OFR

Approaches biological secondary treatment removal efficiencies for BOD and TSS

Reduces size of subsequent treatment

High phosphorus removal

Conclusion

- Appropriate wastewater treatment & collection is desirable and has high Return on Investment
- Recovery of Operation & Maintenance costs through user fees critically important
- Tradeoffs necessary between desire for high environmental standards, affordability and technical capacity

→ PHASED DEVELOPMENT

- CEPT is a flexible and low-cost treatment technology
- Appropriate for initial stage

