

High Penetration AC Bus Wind-Diesel Hybrid Power Systems

Village Power '98 Technical Workshop

Steve Drouilhet

Sr. Engineer

National Renewable Energy Laboratory Golden, Colorado, USA

Defining the Wind Penetration

Energy Penetration = $\frac{\text{Wind turbine AEO}}{\text{Annual primary energy demand}}$

Power Penetration = $\frac{\text{Instantaneous wind power output}}{\text{Primary load}}$

Low Penetration Systems

< 20% energy penetration <50% peak power penetration

- Typically only found in retrofit situations
- All renewable energy output goes directly to serving primary load
- Minimal impact on diesel plant operation
- Few additional control components required
- Higher rate of return on investment possible
- Limited impact on fuel savings, diesel run time, and overall C.O.E.

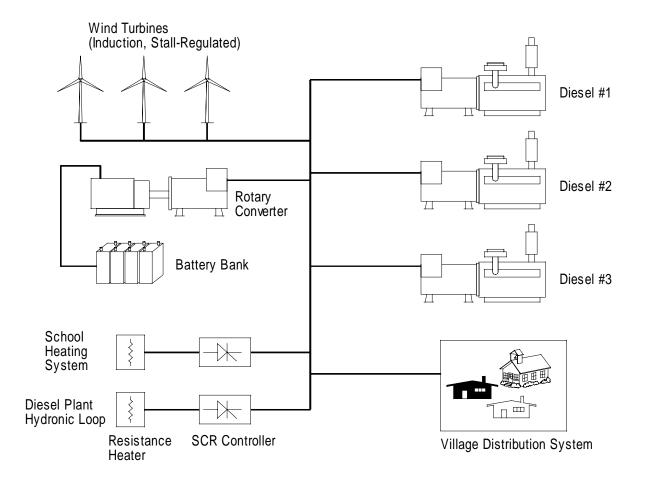
High Penetration Systems

> 50% energy penetration> 100% peak power penetration

- Larger potential impact on fuel savings, diesel run time, cost of energy.
- Usually requires energy storage to realize full benefit of wind energy component.
- Requires additional components (e.g. dump loads, synchronous condensers, power converters, etc.) to regulate system voltage and frequency.
- Typically lower rate of return on investment, due to higher per kW capital cost of system. Situation is helped by reduction in diesel maintenance cost.
- Increased system sophistication requires greater support infrastructure.

Comparison of AC and DC Bus Wind Hybrid Systems

Issue	AC Bus	DC Bus
Scale	Best suited to systems > 40 kW.	Best suited to small systems.
	Permits use of larger more cost- effective wind turbines	Simpler architecture more easily maintained.
Renewable	Wind turbine power can flow	All power must flow through
Energy Path	directly to the load, without the	a DC/AC converter (rotary or
	losses associated with power	inverter)
	conversion.	
Siting	Existing AC distribution lines	Requires dedicated lines to
	can be used to connect wind	connect turbines to power
	turbines to power system.	system.
Control	Active control system required	Relatively simple system
Complexity	to dispatch wind turbines,	control. However, embedded
	modulate dump load power,	inverter controls can be
	dispatch storage, etc.	complex.
Cost	Often competing with existing	Often offers 24 hr/day power
	diesel power stations. Must be	where none existed. Higher
	competitive with diesel only.	costs are tolerated.



Principles of AC Bus Hybrid Power Systems

- Frequency is controlled by maintaining a balance of real power
 - \Rightarrow dump loads
 - \Rightarrow control power to/from energy storage
 - \Rightarrow diesel load following
 - > ordinary diesel
 - > variable speed diesel
 - \Rightarrow controllable output variable speed wind turbine
- Voltage is controlled by maintaining a balance of reactive power
 - \Rightarrow diesel generator voltage regulator
 - \Rightarrow synchronous condenser
 - \Rightarrow static VAR compensator

AC Bus Wind-Diesel Architecture for Wales, AK

Conclusions

- High penetration AC bus wind-diesel systems have complex control requirements. Significant engineering development effort is required.
- AC bus architecture appears to be the more costeffective choice for larger (>100 kW) hybrid power systems
- System integration is the key. The individual components of an AC system can be as reliable as those of a DC system.